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PROBLEM. Let I' be a nice graph. Show that I is very connected.

In this talk | would like to give three examples of results about the connectivity of
a graph that follow by considering its spectrum. There are lots of open problems.
Three measures of connectivity play a rdle here:

(i) is T connected or not?

(ii) w(T), the vertex connectivity of I, that is, the minimum number of vertices

that one has to remove in order to disconnect I'.
(iii) ¢(T"), the toughness of T, is defined as

min i
s ¢(T'\S)
where S runs over all sets of vertices such that I \ S is disconnected, and
c(I'\ S) is its number of connected components.
The graph Ko without vertices is not connected (we have c(Kop) = 0, while
¢(I') = 1 for connected graphs I') but | shall leave undefined whether it is
disconnected, and hence do not define x(I') and ¢(I") when I is complete.

For example, for the Petersen graph we find x(I') = 3 and t(I') = 4. More
generally, we clearly have x(I") < k(T') if k(I") is the (minimal) valency of T'.
One may also ask about the size of ‘nonlocal’ cut sets. For example,

(1) (‘unimodality’) Is it true that if S is a cut set of I, with separation '\ S =
A + B, then min(|I'(S) N 4|, |I'(S) N B|) < |S|? (Here I'(S) denotes the
set of all vertices adjacent to some vertex of S.) (Jack Koolen remarks that
some condition is necessary: for each ¢, 0 < ¢ < 17, the Biggs-Smith graph
has a cut set S of size 17 such that [['(S)NA| = 17414, |I'(S)NB| = 34—1.)

(2) Show that |S| is substantially larger than k when S is nonlocal (say, given
a lower bound on the size or the minimum valency of each component of
r'\S).
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1. THE CONNECTIVITY OF STRONGLY REGULAR GRAPHS

THEOREM 1.1. (BROUWER & MESNER [4]) Let I be strongly regular of va-
lency k. Then (L) = k, and the only cut sets of size k are the point neigh-
bourhoods.

The weaker result that for strongly regular graphs the edge-connectivity is
at least the valency, was shown ten years earlier by PLESNIK[10].

Open problems are for example:

(3) Prove the above result for distance-regular graphs.

(4) Let T be strongly regular with parameters (v, k, A, ), and let S be a dis-
connecting set not containing any point neighbourhood I'(z). Show that
|S] > 2k —2— A

(5) Let S be a disconnecting set such that |S N I'(z)| < ak for some fixed «,
0 < @ < 1, and all vertices 2 of I'. Prove a superlinear (in k) lower bound

for |S|.

GoODSIL [7] conjectures that for any graph that is a colour class in an association
scheme, the edge-connectivity equals the degree, and I conjecture the same for
the vertex-connectivity.

Partial results: FIEDLER [6] shows that the vertex-connectivity of a graph
is at least k — 03, where k is the degree and 5 the second largest eigenvalue.
LovAsz [9], Problem 12.14, proves that the edge-connectivity of a vertex-
transitive graph is at least its degree. An old result says that the vertex-
connectivity of a vertex-transitive graph is at least 2(k + 1)/3, where the ex-
treme case is the clique extension of a circuit.

BROUWER & MULDER [5] showed k(I') = k for graphs with the property
that any two distinct vertices have either 0 or 2 common neighbours. This
settles (3) in the case A € {0,2}, p = 2.

2. THE CONNECTEDNESS OF GENERIC PIECES OF GENERALIZED POLYGONS
THEOREM 2.1. (BROUWER [2]) Let I" be the point graph or the flag graph of
a finite generalized polygon. Then the subgraph A of T’ induced on the set
of all vertices far away from (‘in general position w.r.t.’) a point or flag is
connected, except in the cases G2(2), 2F4(2) and (for the flag graph) B(2),
G2(3). A similar result holds more generally for the complement of a geometric
hyperplane.

Open problems:
(6) Generalize this to near polygons.

(7) Generalize this to distance-regular graphs.

It is very easy to see that in a strongly regular graph the subgraph on the
vertices far away from a point is connected (except when the graph is complete
multipartite).
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3. THE TOUGHNESS OF A REGULAR GRAPH

THEOREM 3.1. (ALON-BROUWER, cf. [I, 3]) Let " be a graph on v vertices,
regular of valency k, and with eigenvalues k =6, > 65 > ... > 60,. Put

A= Jnax 16;].
Then
t(T) > k_ 2
Y2

Open problems:

(8) Prove t(I') > £ — 1. (I conjecture that this is the right bound.)
(9) Prove t(T') = £

in many cases.

>

ExAMPLES We have bipartite graphs of small toughness, so the ‘—1" would be
best possible. The Delsarte-Hoffman bound for cocliques C in strongly regular
graphs states

= ey

If equality holds, and A = —#,, (as is often the case), then we find with S = T'\C:
t() < (v = |C))/IC] = &

4. TooLs

How are these results proved? Essentially, only interlacing (cf. HAEMERS [8])
is used. Interlacing comes in two main forms:

(i) If A is an induced subgraph of a graph I, then the eigenvalues n; (1 <
J < u) of A interlace the eigenvalues 6; (1 < i < v) of I': we have 6; > n;
(1<i<wu)and ny—j >0,_; (0<j<u-—1).

(ii) Given a partition II of the index set of a symmetric matrix A, let
B = (BR,s)r,sen be the matrix of average row sums of the corresponding
submatrices of A. Then the eigenvalues of B interlace those of A.

EXAMPLES

LEMMA 4.1. The average valency of a graph is not more than its largest eigen-
value.

ProoF. Use a partition with 1 part. O

LEMMA 4.2. Let T' be regular of valency k on v vertices, and let the graph
induced on the r-set R have average valency kr. Then

0 > (vkg —rk)/(v —1) > 6,,

(and hence

r <v(kr —0,)/(k—6,).
For kr =0 we find the Delsarte-Hoffman bound).
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PrROOF. Use a partition with 2 parts. O
LeEMMA 4.3. LetT' and R be as before. Put A = max(|62],|0y]). Then

> (I0(z) N R| - %)2 < Nr(v—1)/v.

T

ProOOF. Use a partition with 2 parts, and apply to A2, the square of the
adjacency matrix of T'. O

5. PROOFS OF THE RESULTS IN SECTIONS 1,2,3
Let I have eigenvalues k = 6, > 0, > .... If A is a disconnected subgraph, then
its spectrum is the union of the spectra of its components. Each component has
a largest eigenvalue at least as large as its average degree, and by interlacing
it follows that all components except perhaps one have average degree at most
2, but this is much too small (except when I is very small).

This proves the results of Sections 1 and 2. For those of Section 3, use the
above three Lemmata and compute.
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