

Spectrum and Connectivity of Graphs

A.E. Brouwer

Technical University Eindhoven, Department of Mathematics, P.O. Box 513, 5600 MB Eindhoven The Netherlands e-mail aeb@win.tue.nl

 $\operatorname{Problem}.$ Let Γ be a nice graph. Show that Γ is very connected.

In this talk I would like to give three examples of results about the connectivity of a graph that follow by considering its spectrum. There are lots of open problems.

Three measures of connectivity play a rôle here:

- (i) is Γ connected or not?
- (iii) $\kappa(\Gamma)$, the vertex connectivity of Γ , that is, the minimum number of vertices that one has to remove in order to disconnect Γ .
- (iii) $t(\Gamma)$, the toughness of Γ , is defined as

$$\min_{S} \ \frac{|S|}{c(\Gamma \setminus S)}$$

where S runs over all sets of vertices such that $\Gamma \setminus S$ is disconnected, and $c(\Gamma \setminus S)$ is its number of connected components.

The graph K_0 without vertices is not connected (we have $c(K_0)=0$, while $c(\Gamma)=1$ for connected graphs Γ) but I shall leave undefined whether it is disconnected, and hence do not define $\kappa(\Gamma)$ and $t(\Gamma)$ when Γ is complete.

For example, for the Petersen graph we find $\kappa(\Gamma)=3$ and $t(\Gamma)=\frac{4}{3}$. More generally, we clearly have $\kappa(\Gamma)\leq k(\Gamma)$ if $k(\Gamma)$ is the (minimal) valency of Γ . One may also ask about the size of 'nonlocal' cut sets. For example,

- (1) ('unimodality') Is it true that if S is a cut set of Γ , with separation $\Gamma \setminus S = A+B$, then $\min(|\Gamma(S)\cap A|, |\Gamma(S)\cap B|) \leq |S|$? (Here $\Gamma(S)$ denotes the set of all vertices adjacent to some vertex of S.) (Jack Koolen remarks that some condition is necessary: for each $i, 0 \leq i \leq 17$, the Biggs-Smith graph has a cut set S of size 17 such that $|\Gamma(S)\cap A|=17+i, |\Gamma(S)\cap B|=34-i.$)
- (2) Show that |S| is substantially larger than k when S is nonlocal (say, given a lower bound on the size or the minimum valency of each component of $\Gamma \setminus S$).

1. The connectivity of strongly regular graphs

THEOREM 1.1. (BROUWER & MESNER [4]) Let Γ be strongly regular of valency k. Then $\kappa(\Gamma) = k$, and the only cut sets of size k are the point neighbourhoods.

The weaker result that for strongly regular graphs the edge-connectivity is at least the valency, was shown ten years earlier by PLESNIK[10].

Open problems are for example:

- (3) Prove the above result for distance-regular graphs.
- (4) Let Γ be strongly regular with parameters (v, k, λ, μ) , and let S be a disconnecting set not containing any point neighbourhood $\Gamma(x)$. Show that $|S| \geq 2k 2 \lambda$.
- (5) Let S be a disconnecting set such that $|S \cap \Gamma(x)| \leq \alpha k$ for some fixed α , $0 < \alpha < 1$, and all vertices x of Γ . Prove a superlinear (in k) lower bound for |S|.

Godsil [7] conjectures that for any graph that is a colour class in an association scheme, the edge-connectivity equals the degree, and I conjecture the same for the vertex-connectivity.

Partial results: FIEDLER [6] shows that the vertex-connectivity of a graph is at least $k-\theta_2$, where k is the degree and θ_2 the second largest eigenvalue. Lovász [9], Problem 12.14, proves that the edge-connectivity of a vertex-transitive graph is at least its degree. An old result says that the vertex-connectivity of a vertex-transitive graph is at least 2(k+1)/3, where the extreme case is the clique extension of a circuit.

BROUWER & MULDER [5] showed $\kappa(\Gamma) = k$ for graphs with the property that any two distinct vertices have either 0 or 2 common neighbours. This settles (3) in the case $\lambda \in \{0,2\}, \mu = 2$.

2. The connectedness of generic pieces of generalized polygons Theorem 2.1. (Brouwer [2]) Let Γ be the point graph or the flag graph of a finite generalized polygon. Then the subgraph Δ of Γ induced on the set of all vertices far away from (in general position w.r.t.') a point or flag is connected, except in the cases $G_2(2)$, ${}^2F_4(2)$ and (for the flag graph) $B_2(2)$, $G_2(3)$. A similar result holds more generally for the complement of a geometric hyperplane.

Open problems:

- (6) Generalize this to near polygons.
- (7) Generalize this to distance-regular graphs.

It is very easy to see that in a strongly regular graph the subgraph on the vertices far away from a point is connected (except when the graph is complete multipartite).

3. The toughness of a regular graph

Theorem 3.1. (Alon-Brouwer, cf. [1, 3]) Let Γ be a graph on v vertices, regular of valency k, and with eigenvalues $k = \theta_1 \ge \theta_2 \ge ... \ge \theta_v$. Put

$$\lambda := \max_{2 \leq j \leq v} |\theta_j|.$$

Then

$$t(\Gamma) > \frac{k}{\lambda} - 2.$$

Open problems:

- (8) Prove $t(\Gamma) \geq \frac{k}{\lambda} 1$. (I conjecture that this is the right bound.)
- (9) Prove $t(\Gamma) = \frac{k}{\lambda}$ in many cases.

EXAMPLES We have bipartite graphs of small toughness, so the '-1' would be best possible. The Delsarte-Hoffman bound for cocliques C in strongly regular graphs states

$$|C| \le \frac{v}{1 + k/(-\theta_v)}.$$

If equality holds, and $\lambda = -\theta_v$ (as is often the case), then we find with $S = \Gamma \setminus C$: $t(\Gamma) \leq (v - |C|)/|C| = \frac{k}{\lambda}$.

4. Tools

How are these results proved? Essentially, only interlacing (cf. HAEMERS [8]) is used. Interlacing comes in two main forms:

- (i) If Δ is an induced subgraph of a graph Γ , then the eigenvalues η_j $(1 \leq j \leq u)$ of Δ interlace the eigenvalues θ_i $(1 \leq i \leq v)$ of Γ : we have $\theta_i \geq \eta_i$ $(1 \leq i \leq u)$ and $\eta_{u-j} \geq \theta_{v-j}$ $(0 \leq j \leq u-1)$.
- (ii) Given a partition Π of the index set of a symmetric matrix A, let $B = (B_{R,S})_{R,S \in \Pi}$ be the matrix of average row sums of the corresponding submatrices of A. Then the eigenvalues of B interlace those of A.

EXAMPLES

Lemma 4.1. The average valency of a graph is not more than its largest eigenvalue.

PROOF. Use a partition with 1 part.

Lemma 4.2. Let Γ be regular of valency k on v vertices, and let the graph induced on the r-set R have average valency k_R . Then

$$\theta_2 \ge (vk_R - rk)/(v - r) \ge \theta_v$$

(and hence

$$r \leq v(k_R - \theta_v)/(k - \theta_v)$$
.

For $k_R = 0$ we find the Delsarte-Hoffman bound).

LEMMA 4.3. Let Γ and R be as before. Put $\lambda = \max(|\theta_2|, |\theta_v|)$. Then

$$\sum_{x} (|\Gamma(x) \cap R| - \frac{rk}{v})^2 \le \lambda^2 r(v - r)/v.$$

PROOF. Use a partition with 2 parts, and apply to A^2 , the square of the adjacency matrix of Γ .

5. Proofs of the results in sections 1,2,3

Let Γ have eigenvalues $k=\theta_1\gg\theta_2\geq\dots$ If Δ is a disconnected subgraph, then its spectrum is the union of the spectra of its components. Each component has a largest eigenvalue at least as large as its average degree, and by interlacing it follows that all components except perhaps one have average degree at most θ_2 , but this is much too small (except when Γ is very small).

This proves the results of Sections 1 and 2. For those of Section 3, use the above three Lemmata and compute.

References

- 1. Noga Alon (1993). Tough Ramsey graphs without short cycles, preprint.
- 2. A.E. Brouwer (1993). The complement of a geometric hyperplane in a generalized polygon is usually connected, F. De Clerck et al.(eds), Finite geometry and combinatorics Proceedings, Deinze 1992, 53–57. London Math. Soc. Lect. Note Ser. 191, Cambridge Univ. Press.
- 3. A.E. Brouwer (1993). Toughness and spectrum of a graph, preprint.
- 4. A.E. Brouwer & D.M. Mesner (1985). The connectivity of strongly regular graphs, *Europ. J. Combin.* **6**, 215—216.
- 5. A.E. Brouwer & H.M. Mulder (1994). The vertex connectivity of a {0,2}-graph equals its valency, preprint.
- 6. M. FIEDLER (1973). Algebraic connectivity of graphs, Czech. Math. J. 23, 298–305.
- 7. C.D. Godsil (1981). Equiarboreal graphs, Combinatorica 1, 163–167.
- 8. W.H. Haemers (1980). Eigenvalue techniques in design and graph theory, Reidel, Dordrecht.
- 9. L. Lovász (1979). Combinatorial problems and exercises, North Holland, Amsterdam.
- 10. J. Plesńik (1975). Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenianae, Math. 30, 71–93.